Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ernesto Schulz Lang,^a* Ramão Marceli Fernandes Jr,^a Sebastião Souza Lemos,^b Leonardo Schulz Lang^c and Robert Alan Burrow^a

^aLaboratório de Materiais Inorgânicos, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil 97119-900, ^bInstituto de Química, Universidade de Brasília, Brasília, DF, Brazil 70919-970, and ^cDepartamento de Biologia, Universidade Federal de Goiás, Jataí, GO, Brazil 75801-615

Correspondence e-mail: eslang@quimica.ufsm.br

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.015 Å R factor = 0.047 wR factor = 0.100 Data-to-parameter ratio = 18.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved (4,6-Dimethylpyrimidine-2-thiolato)-(triphenylphosphine)gold(I)

The title compound, $[Au(4,6-Me_2pymS)(PPh_3)]$ or $[Au(C_6H_7N_2S)(C_{18}H_{15}P)]$, exhibits a linear Au atom S— Au—P geometry, with Au—P = 2.247 (2) Å, Au—S = 2.289 (2) Å and P—Au—S = 178.19 (11)°. There is an intramolecular interaction between one N atom of the 4,6-Me_2pymS ligand and the Au atom, with an Au···N distance of 3.154 (8) Å.

Comment

The preparation of the novel two triphenylphosphinegold(I) complexes of the anions derived from pyridine-2-thione (2-pySH) and 1*H*-pyrimidine-2-thione (2-pymSH) have been recently reported, together with their X-ray crystal structure determinations (Cookson & Tiekink, 1993). In this paper, we report the preparation and structural characterization of the title compound, (I).

The anionic 4,6-Me₂pymS ligand is coordinated via the S atom (Fig. 1 and Table 1). The Au-S bond length and S-Au-P angle in (I) are close to those found for the two complexes [Au(2-pyS)(PPh₃)] [2.297 (2) Å and $177.9 (1)^{\circ}$, respectively] and [Au(2-pymS)(PPh₃)] [2.310 (3) Å and 174.7 (1)°, respectively] (Cookson & Tiekink, 1993). The Au atom shows nearly linear coordination with the S and P atoms, in spite of a fairly close intramolecular interaction with an N atom of the 4,6–Me₂pymS ligand. This interaction, Au $1 \cdots$ N42 of 3.154 (8) Å, is slightly less than the sum of the van der Waals radii (Pauling, 1960) of the Au and N atoms, 3.25 Å. Given the linearity of the S-Au-P angle, the 4,6-Me₂pymS ligand appears to be coordinating essentially in the monodentate mode through its S atom. There is no metal-metal interaction in the solid state but weak (Desiraju & Steiner, 1999) intermolecular C-H···N hydrogen bonds are present (Table 2).

In CDCl_3 solution at room temperature, the ¹H NMR data shows inequivalent methyl groups for the anionic 4,6-Me₂pymS ligand. This suggests that the ligand is not permitted to rotate freely in solution, which is consistent with the persistence of the intramolecular interaction between the N atom of the ligand and the Au atom. Received 29 July 2002 Accepted 31 July 2002 Online 9 August 2002

Figure 1

View of molecule (I), with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

The compound 4,6-dimethylpyrimidine-2(1H)-thione (4,6-Me₂pymSH) was prepared according to the literature method (Nigam *et al.*, 1983) and the title complex was synthesized by the following procedure: 0.28 g (2 mmol) of 4,6-Me₂pymSH was dissolved in 30 ml of THF (freshly distilled) in a Schlenk tube kept under an N₂ atmosphere. To the solution, 0.84 ml (6 mmol) of triethylamine, NEt₃, was added and the resulting mixture was stirred for 30 min. To this solution, 0.99 g (2 mmol) of [AuCl(PPh₃)] dissolved in 10 ml of THF was added, over a period of 10 min, and the mixture was stirred for about 3 h. A white flocculent precipitate was filtered off and identified as triethylamine hydrochloride, [(HNEt₃)Cl]. Slow evaporation of the solvent led to the appearance of a white microcrystalline solid [yield 1.0 g (92%)]. Well developed crystals of (I), suitable for X-ray analysis, were obtained by recrystallization from a 1:1 (ν/ν) mixture of dichloromethane and *n*-hexane (m.p. 470–472 K).

Crystal data

$ \begin{bmatrix} Au(C_6H_7N_2S)(C_{18}H_{15}P) \end{bmatrix} \\ M_r &= 598.43 \\ \text{Triclinic, } P\overline{1} \\ a &= 8.8282 (17) \text{ Å} \\ b &= 11.144 (2) \text{ Å} \\ c &= 12.318 (3) \text{ Å} \\ \alpha &= 97.104 (19)^{\circ} \\ \beta &= 105.586 (18)^{\circ} \\ \gamma &= 95.05 (2)^{\circ} \\ V &= 1148.9 (4) \text{ Å}^3 \\ \end{bmatrix} \\ Data \ collection $	Z = 2 $D_x = 1.730 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 25 reflections $\theta = 7.3-15.2^{\circ}$ $\mu = 6.58 \text{ mm}^{-1}$ T = 293 (2) K Block, colorless $0.20 \times 0.15 \times 0.10 \text{ mm}$
Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (<i>ABSPSI</i> routine in <i>PLATON</i> ; Spek, 1995) $T_{min} = 0.318$, $T_{max} = 0.518$ 8437 measured reflections 5002 independent reflections 2962 reflections with $I > 2\sigma(I)$	$R_{int} = 0.089$ $\theta_{max} = 27.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 15$ 3 standard reflections every 300 reflections frequency: 3600 min intensity decay: 12.4%

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2 (F_o^2) + (0.0366P)^2]$
$wR(F^2) = 0.100$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.98	$(\Delta/\sigma)_{\rm max} = 0.016$
5002 reflections	$\Delta \rho_{\rm max} = 0.88 \ {\rm e} \ {\rm \AA}^{-3}$
264 parameters	$\Delta \rho_{\rm min} = -1.43 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (\dot{A}, \circ) .

Au1-P1	2.247 (2)	Au1-N42	3.154 (8)
Au1-S1	2.289 (2)	S1-C41	1.749 (10)
P1-Au1-S1	178.19 (11)	S1-Au1-N42	56.27 (14)
P1-Au1-N42	123.97 (14)	C41-S1-Au1	104.4 (3)

Table 2	
Hydrogen-bonding geometry	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C14−H14· · · N46 ⁱ	0.93	2.65	3.547 (13)	162
C33−H33· · · N46 ⁱⁱ	0.93	2.63	3.426 (14)	144

Symmetry codes: (i) x, 1 + y, z; (ii) 1 - x, -y, 1 - z.

The H atoms were constrained to geometric positions fixed to the parent atoms with distances of 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively. The isotropic displacement parameters were fixed to 102 and 150% of that of the parent atom for the aromatic and methyl H atoms, respectively.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *SET4* in *CAD-4 Software*; data reduction: *HELENA* (Spek, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* for Windows (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

Financial assistance was provided by MCT/CNPq and FAPERGS, and the authors thank Professor Ulrich Abram, University of Berlin, Germany, for his kind hospitality and for providing facilities.

References

- Cookson, P. D. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans, pp. 259–263.
- Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond*, pp. 5–6. Oxford University Press.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nigam, S. C., Saharia, G. S. & Sharma, H. R. (1983). J. Indian Chem. Soc. 60, 583–584.
- Pauling, L. (1960). The Nature of the Chemical Bond, p. 260. Oxford University Press.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (1995). *HELENA* and *PLATON*. University of Utrecht, The Netherlands.